Cystatin B deficiency sensitizes neurons to oxidative stress in progressive myoclonus epilepsy, EPM1.
نویسندگان
چکیده
The progressive myoclonus epilepsies, featuring the triad of myoclonus, seizures, and ataxia, comprise a large group of inherited neurodegenerative diseases that remain poorly understood and refractory to treatment. The Cystatin B gene is mutated in one of the most common forms of progressive myoclonus epilepsy, Unverricht-Lundborg disease (EPM1). Cystatin B knockout in a mouse model of EPM1 triggers progressive degeneration of cerebellar granule neurons. Here, we report impaired redox homeostasis as a key mechanism by which Cystatin B deficiency triggers neurodegeneration. Oxidative stress induces the expression of Cystatin B in cerebellar granule neurons, and EPM1 patient-linked mutation of the Cystatin B gene promoter impairs oxidative stress induction of Cystatin B transcription. Importantly, Cystatin B knockout or knockdown sensitizes cerebellar granule neurons to oxidative stress-induced cell death. The Cystatin B deficiency-induced predisposition to oxidative stress in neurons is mediated by the lysosomal protease Cathepsin B. We uncover evidence of oxidative damage, reflected by depletion of antioxidants and increased lipid peroxidation, in the cerebellum of Cystatin B knock-out mice in vivo. Collectively, our findings define a pathophysiological mechanism in EPM1, whereby Cystatin B deficiency couples oxidative stress to neuronal death and degeneration, and may thus provide the basis for novel treatment approaches for the progressive myoclonus epilepsies.
منابع مشابه
Neuropathological changes in a mouse model of progressive myoclonus epilepsy: cystatin B deficiency and Unverricht-Lundborg disease.
Progressive myoclonus epilepsy of the Unverricht-Lundborg type (EPM1) is a recessively inherited neurodegenerative disease caused by loss-of-function mutations in the gene encoding cystatin B, a cysteine protease inhibitor. Mice with disruptions in this gene display myoclonic seizures, progressive ataxia, and cerebellar pathology closely paralleling EPMI in humans. To provide further insight in...
متن کاملHuman stefin B normal and patho-physiological role: molecular and cellular aspects of amyloid-type aggregation of certain EPM1 mutants
Epilepsies are characterized by abnormal electrophysiological activity of the brain. Among various types of inherited epilepsies different epilepsy syndromes, among them progressive myoclonus epilepsies with features of ataxia and neurodegeneration, are counted. The progressive myoclonus epilepsy of type 1 (EPM1), also known as Unverricht-Lundborg disease presents with features of cerebellar at...
متن کاملCathepsin B but not cathepsins L or S contributes to the pathogenesis of Unverricht-Lundborg progressive myoclonus epilepsy (EPM1).
The inherited epilepsy Unverricht-Lundborg disease (EPM1) is caused by loss-of-function mutations in the cysteine protease inhibitor, cystatin B. Because cystatin B inhibits a class of lysosomal cysteine proteases called cathepsins, we hypothesized that increased proteolysis by one or more of these cathepsins is likely to be responsible for the seizure, ataxia, and neuronal apoptosis phenotypes...
متن کاملProgressive Volume Loss and White Matter Degeneration in Cstb-Deficient Mice: A Diffusion Tensor and Longitudinal Volumetry MRI Study
Unverricht-Lundborg type progressive myoclonus epilepsy (EPM1, OMIM 254800) is an autosomal recessive disorder characterized by onset at the age of 6 to 16 years, incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures. It is caused by mutations in the gene encoding cystatin B. Previously, widespread white matter changes and atrophy has been detected both in adult EPM1 p...
متن کاملImpaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy
Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures with onset at the age of 6 to 16 years. EPM1 patients also exhibit a range of skeletal changes, e.g., thickened frontal cranial bone, arachnodactyly and scoliosis. Mutations in the gene e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 18 شماره
صفحات -
تاریخ انتشار 2009